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Abstract

A family of orthonormal polynomials on the unit ball Bd of Rd with respect to the inner product

〈f, g〉 =
∫
Bd

�[(1 − ‖x‖2)f (x)]�[(1 − ‖x‖2)g(x)] dx,

where � is the Laplace operator, is constructed explicitly.
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1. Introduction

In a recent study on the numerical solution of the nonlinear Poisson equation −�u = f (·, u)

on the unit disk with zero boundary conditions, Atkinson and Hansen [2] asked the question of
finding an explicit orthogonal basis for the inner product defined by

〈f, g〉� := 1

�

∫
B2

�[(1 − x2 − y2)f (x, y)]�[(1 − x2 − y2)g(x, y)] dx dy

on the unit disk B2 of the Euclidean plane, where � is the usual Laplace operator. The purpose
of this note is to provide an answer for this question.

∗ Fax: +1 541 346 0987.
E-mail address: yuan@math.uoregon.edu.

0021-9045/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2005.11.009

http://www.elsevier.com/locate/jat
mailto:yuan@math.uoregon.edu


Y. Xu / Journal of Approximation Theory 138 (2006) 232–241 233

We shall consider more generally the analogous inner product on the unit ball Bd in Rd . We call
orthogonal polynomials with respect to such an inner product Sobolev orthogonal polynomials.
In the theory of orthogonal polynomials of one variable, the name Sobolev is associated with
polynomials that are orthogonal with respect to an inner product defined using both functions and
their derivatives; see, for example, [4] and the references therein. As far as we know, Sobolev
orthogonal polynomials have not been studied in the case of several variables.

Our main result, given in Section 2, is a family of orthonormal polynomials with respect to
〈·, ·〉� on Bd that are constructed using spherical harmonics and Jacobi polynomials in Section 2.
For d = 1, orthogonal polynomials with respect to this inner product have been studied recently
in [5]. The explicit formula can be used to study further properties of the orthogonal basis. In
particular, it turns out that the orthogonal expansion of a function f in this basis can be computed
without involving the derivatives of f. This will be discussed in Section 3.

2. Sobolev orthogonal polynomials

For x ∈ Rd , let ‖x‖ denote the usual Euclidean norm of x. The unit ball in Rd is Bd := {x :
‖x‖�1}. Its surface is Sd−1 := {x : ‖x‖ = 1}. The volume of Bd and the surface area of Sd−1

are denoted by vol(Bd) and �d−1, respectively,

vol(Bd) = �d−1/d and �d−1 = 2�d/2/�(d/2).

Let �d = R[x1, . . . , xd ] be the ring of polynomials in d variables and let �d
n denote the subspace

of polynomials of total degree at most n. We consider the inner product defined on the polynomial
space by

〈f, g〉� := 1

4d2 vol(Bd)

∫
Bd

�[(1 − ‖x‖2)f (x)]�[(1 − ‖x‖2)g(x)] dx.

The constants are chosen so that 〈1, 1〉� = 1. As pointed out in [2], the inner product is well
defined and positive definite on �d . Let Vd

n (�) denote the space of orthogonal polynomials of
degree n which are orthogonal to all polynomials of lower degree with respect to 〈f, g〉�. It follows
from the general theory of orthogonal polynomials in several variables [3] that the dimension of
Vd

n (�) is
(
n+d−1
d−1

)
. If {P�} is a basis of Vd

n (�) and 〈P�, P�〉� = 0 whenever � �= �, it is called
a mutually orthogonal basis. If, in addition, P� is normalized so that 〈P�, P�〉� = 1, the basis
is called orthonormal. Our objective in this section is to find an explicit orthonormal basis for
Vd

n (�).
The presence of the Laplace operator suggests that we make use of harmonic polynomials,

which are homogeneous polynomials that satisfy the equation �P = 0. Let Hd
n denote the space

of harmonic polynomials of degree n. It is well known that

dim Hd
n =

(
n + d − 1

d − 1

)
−

(
n + d − 3

d − 1

)
:= �n.

The restriction of Y ∈ Hd
n on Sd−1 are called spherical harmonics. They are orthogonal on Sd−1.

We will use the spherical polar coordinates x = rx′ for x ∈ Rd , r �0, and x′ ∈ Sd−1. For Y ∈ Hd
n

we use the notation Y (x) to denote the harmonic polynomials and use Y (x′) to denote the spherical
harmonics. This agrees with x = rx′ since Y is a homogeneous polynomial, Y (x) = rnY (x′).
Throughout this paper, we use the notation {Yn

� : 1����n} to denote an orthonormal basis
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for Hd
n , that is,

1

�d−1

∫
Sd−1

Yn
� (x′)Ym

� (x′) d�(x′) = ��,��n,m, 1��, ���n, (2.1)

where d� stands for the surface measure on Sd−1. In terms of the spherical polar coordinates,
x = rx′, r > 0 and x′ ∈ Sd−1, the Laplace operator can be written as

� = �2

�r2
+ d − 1

r

�
�r

+ 1

r2 �0, (2.2)

where �0 is the spherical Laplacian on Sd−1. It is well-known that

�0Y (x′) = −n(n + d − 2)Y (x′), Y ∈ Hd
n, x′ ∈ Sd−1. (2.3)

The spherical harmonics have been used to construct orthogonal polynomials on the unit ball.
For later use, let us mention an orthogonal basis with respect to the inner product

〈f, g〉� := c�

∫
Bd

f (x)g(x)W�(x) dx, W�(x) = (1 − ‖x‖2)�,

where � > −1 and c� is the normalization constant of W�. Let Vd
n (W�) denote the space of

orthogonal polynomials of degree n that are orthogonal to all polynomials of smaller degree
based on using 〈f, g〉�. A mutually orthogonal basis for Vn(W�) is given by [3]

P n
j,�(W�; x) = P

(�,n−2j+ d−2
2 )

j (2‖x‖2 − 1)Y
n−2j
� (x), 0�j �n/2, (2.4)

where P
(�,�)

j denotes the Jacobi polynomial of degree j, which is orthogonal with respect to

(1 − x)�(1 + x)� on [−1, 1], and {Yn−2j
� : 1�j ��n−2j } is a basis for Hd

n−2j .
In view of (2.4) we will look for a basis with respect to 〈f, g〉� in the form of

Qn
j,�(x) = qj (2‖x‖2 − 1)Y

n−2j
� (x), 0�2j �n, Y

n−2j
� ∈ Hd

n−2j , (2.5)

where qj is a polynomial of degree j in one variable.

Lemma 2.1. Let Qn
j,� be defined as above. Then

�
[
(1 − ‖x‖2)Qn

j,�(x)
]

= 4
(J�qj

)
(2r2 − 1)Y

n−2j
� (x),

where � = n − 2j + d−2
2 and

(J�qj )(s) = (1 − s2)q ′′
j (s) + (� − 1 − (� + 3)s)q ′

j (s) − (� + 1)qj (s).

Proof. Using spherical-polar coordinates, we can use (2.3) for the spherical part of �, then the
radial part of � in (2.2) gives, after a tedious calculation, that

�
[
(1 − ‖x‖2)Qn

j,�(x)
]

= �
[
(1 − r2)qj (2r2 − 1)rn−2j Y

n−2j
� (x′)

]
= 4rn−2j

[
4r2(1 − r2)q ′′

j (2r2 − 1)

+ 2((� + 1) − (� + 3)r2)q ′
j (2r2 − 1)

− (� + 1)qj (2r2 − 1)
]
Y

n−2j
� (x′).

Setting s �→ 2r2 − 1 gives the stated result. �
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Lemma 2.2. Let p
�
k ∈ �k := �1

k be orthogonal with respect to the inner product

(f, g)� :=
∫ 1

−1
(J�f )(s)(J�g)(s)(1 + s)� ds, � > −1.

Then the polynomials Qn
j,� in (2.5) with qj = p

�n−2j

j , where �k = k + (d − 2)/2, form a mutually

orthogonal basis for Vd
n (�).

Proof. It is easy to see that (f, g)� is indeed a positive definite inner product on the space of
polynomials of one variables, so that the orthogonal polynomials with respect to (f, g)� exist (see
Lemma 2.3 below). Using the formula

∫
Bd

f (x) dx =
∫ 1

0
rd−1

∫
Sd−1

f (rx′) d�(x′) dr,

the definition of Qn
j,� and (2.1) shows immediately that

〈Qn
j,�, Q

n′
j ′,�′ 〉� := ��,�′�n−2j,n′−2j ′

× 1

4d

∫ 1

0
rd+2(n−2j)−142(J�n−2j

qj )(2r2 − 1)(J�n′−2j ′ qj ′)(2r2 − 1) dr.

In the nonzero case we have �n−2j = �n′−2j ′ . Thus, a change of variable r �→ √
(1 + s)/2 shows

that

〈Qn
j,�, Q

n′
j ′,�′ 〉� = ��,�′�n−2j,n′−2j ′

1

d2�n−2j

(qj , qj ′)�n−2j
, (2.6)

which proves the stated result. �

We note that q
�n−2j

j should be understood as one member (of degree j) in the orthogonal family

{q�n−2j

k }.

Lemma 2.3. The polynomials p
�
j defined by

p
�
0 (s) = 1, p

�
j (s) = (1 − s)P

(2,�)

j−1 (s), j �1

are orthogonal with respect to the inner product (f, g)�.

Proof. We need the following property of the Jacobi polynomials [6, p. 71],

(1 − s)P
(2,�)

j−1 (s) = 2

2j + � + 1

[
(j + 1)P

(1,�)

j−1 (s) − jP
(1,�)

j (s)
]
. (2.7)

The Jacobi polynomial P
(1,�)

j−1 satisfies a differential equation

(1 − s2)y′′ + (−1 + � − (3 + �)s)y ′ + (j − 1)(j + � + 1)y = 0.
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Using these two facts, we easily deduce that

2j + � + 1

2
J�

[
(1 − s)P

(2,�)

j−1 (s)
]

= (j+1)J�P
(1,�)

j−1 (s)−jJ�P
(1,�)

j (s)

= (j+1)
[
(−(j−1)(j+�+1)−(�+1))P

(1,�)

j−1 (s)
]

−j
[
(−j (j + � + 2) − (� + 1))P

(1,�)

j (s)
]

= −j (j + 1)
[
(j + �)P

(1,�)

j−1 (s)−(j+�+1)P
(1,�)

j (s)
]
.

We need yet another formula of Jacobi polynomials [1, p. 782, (22.7.18)],

(2j + � + 1)P
(0,�)

j (s) = (j + � + 1)P
(1,�)

j (s) − (j + �)P
(1,�)

j−1 (s) (2.8)

which implies immediately that

J�

[
(1 − s)P

(2,�)

j−1 (s)
]

= 2j (j + 1)P
(0,�)

j (s). (2.9)

Hence, for j, j ′ �1, we conclude that

(p
�
j , p

�
j ′)� =

∫ 1

−1
J�

[
(1 − s)P

(2,�)

j−1 (s)
]
J�

[
(1 − s)P

(2,�)

j ′−1 (s)
]
(1 + s)�) ds

= 4j (j + 1)j ′(j ′ + 1)

∫ 1

−1
P

(0,�)

j (s)P
(0,�)

j ′ (s)(1 + s)� ds = 0 (2.10)

whenever j �= j ′. Furthermore, for j �1, we have

(p
�
0 , p

�
j )� = −2j (j + 1)(� + 1)

∫ 1

−1
P

(0,�)

j (s)(1 + s)� ds = 0

since (J�p
�
0 )(s) = (J�1) = −(� + 1). �

As a consequence of the above lemmas, we have found a mutually orthogonal basis with respect
to 〈·, ·〉�.

Theorem 2.4. A mutually orthogonal basis for Vd
n (�) is given by

Qn
0,�(x) = Yn

� (x),

Qn
j,�(x) = (1 − ‖x‖2)P

(2,n−2j+ d−2
2 )

j−1 (2‖x‖2 − 1)Y
n−2j
� (x), 1�j � n

2
, (2.11)

where {Yn−2j
� : 1����n−2j } is an orthonormal basis of Hd

n−2j . Furthermore,

〈Qn
0,�, Q

n
0,�〉� = 2n + d

d
, 〈Qn

j,�, Q
n
j,�〉� = 8j2(j + 1)2

d(n + d/2)
. (2.12)

Proof. The fact that Qn
j,� ∈ Vd

n (�) follows from Lemmas 2.2 and 2.3. To compute the norm of
Qn

0,� we use the fact that

�[(1 − ‖x‖2)Y
n−2j
� (x)] = −2dYn

� (x) − 4〈x, ∇〉Yn
� = −2(d + 2n)Y n

� (x) (2.13)
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by Euler’s formula on homogeneous polynomials, which shows that

〈Qn
0,�, Q

n
0,�〉� = (2n + d)2

d

∫ 1

0
rd−1+2n dr

1

�d−1

∫
Sd−1

[
Yn

� (x)
]2

dx = 2n + d

d
.

Furthermore, using Eqs. (2.6) and (2.10), we have

〈Qn
j,�, Q

n
j,�〉� = 1

d2�j

(pj , pj ′)�j
= 4j2(j + 1)2

d2�j

∫ 1

−1

[
P

(0,�j )

j (s)

]2

(1 + s)�j ds

= 8j2(j + 1)2

d(�j + 2j + 1)
= 8j2(j + 1)2

d(n + d/2)
,

where we have used the well-known formula for the norm of the Jacobi polynomial (see, for
example, [6, p. 68]). �

The explicit formula of the basis (2.11) leads to the following interesting result, which relates
Vd

n (�) to orthogonal polynomials with respect to W2(x) = (1 − ‖x‖)2.

Corollary 2.5. For n�1,

Vd
n (�) = Hd

n ⊕ (1 − ‖x‖2)Vd
n−1(W2).

Proof. Using the basis (2.4) for Vd
n−1(W2), it follows that we actually have

Qn
j,�(x) = (1 − ‖x‖2)P n−2

j−1,�(W2; x) (2.14)

for j �1, from which the stated result follows. �

In the case of d = 2, an orthonormal basis for the space H2
k is given by

Yn
1 (x, y) =

√
1
2 rn cos n	 and Yn

2 (x, y) =
√

1
2 rn sin n	

in polar coordinates x = r cos 	, y = r sin 	. Hence, a mutually orthogonal basis for V2
n(�) is

given by

Qn
0,1(x, y) = Yn

1 (x, y), Qn
0,2(x, y) = Yn

2 (x, y),

Qn
j,1(x, y) = (1 − x2 − y2)P

(2,n−2j)
j−1 (2x2 + 2y2 − 1)Y

n−2j
1 (x, y), 1�j � n

2
,

Qn
j,2(x, y) = (1 − x2 − y2)P

(2,n−2j)
j−1 (2x2 + 2y2 − 1)Y

n−2j
2 (x, y), 1�j � n − 1

2
,

which becomes an orthonormal basis upon dividing by the square root of the norm given by (2.12).
Without normalization, this gives

V2
1 (�) = span{x, y}, V2

2 (�) = span{x2 − y2, xy, 1 − x2 − y2},
V2

3 (�) = span{x3 − 3xy2, 3y3 − x2y, x(1 − x2 − y2), y(1 − x2 − y2)},
for example.
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3. Expansions in Sobolev orthogonal polynomials

Let H 2(Bd) denote the space of functions for which 〈f, f 〉� is finite. This is not the L2 space
on Bd since the definition of 〈·, ·〉� require that f has second-order derivatives. Nevertheless, the
standard Hilbert space theory shows that every f ∈ H 2(Bd) can be expanded into a series in
Sobolev orthogonal polynomials. In other words,

H 2(Bd) =
∞∑

n=0

⊕Vd
n (�) : f =

∞∑
n=0

projn f,

where projn : H 2(Bd) �→ Vd
n (�) is the projection operator, which can be written in terms of the

orthonormal basis (2.11) as

projn f (x) =
∑

0� j �n/2

H−1
j

�n−2j∑
�=0

f̂ n
j,�Q

n
j,�(x), f̂ n

j,� = 〈f, Qn
j,�〉�, (3.1)

where Hj = 〈Qn
j,�, Q

n
j,�〉� are independent of � as shown in (2.12). Let P �

n (x, y) denote the

reproducing kernel of Vd
n (�). In terms of the orthonormal basis (2.11) in the previous section, the

reproducing kernel can be written as

P�
n (x, y) =

∑
0� j �n/2

H−1
j

∑
�

Qn
j,�(x)Qn

j,�(y).

The projection operator can be written as an integral operator with P�
n as its kernel, which means

that

projn f (x) = 〈f, P�
n (x, ·)〉�

= 1

4d2 vol(Bd)

∫
Bd

�[(1 − ‖y‖2)f (y)]�[(1 − ‖y‖2)P �
n (x, y)] dy,

where � is applied on y variable.
It turns out that the orthogonal expansion can be computed without involving derivatives of f.

Theorem 3.1. For j �1, let �j = n − 2j + (d − 2)/2; then

f̂ n
j,� = 8j (j + 1)

d2 vol(Bd)

[
(�j + j)(�j + j + 1)

∫
Bd

f (x)Qn
j,�(x) dx

−1

2

∫
Sd−1

f (y′)Y n−2j
� (y′) d�(y′)

]
; (3.2)

furthermore, for j = 0,

f̂ n
0,� = d + 2n

d

1

�d

∫
Sd−1

Y
n−2j
� (y′)f (y′) d�(y′).

Proof. By (2.4), P n
j,�(W0; x) = P

(0,�j )

j (2‖x‖2 − 1)Y
n−2j
� (x). Let j �1. By Lemma 2.1 and

(2.9),

�
[
(1 − ‖x‖2)Qn

j,�(x)
]

= 8j (j + 1)P n
j,�(W0; x).
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Applying Green’s identity∫
Bd

(u�v − v�u) dx =
∫

Sd−1

(
�v

�n
u − �u

�n
v

)
d�

with v(x) = (1 − ‖x‖2)f (x) and u = Qn
j� shows then

f̂ n
j,� = 8j (j + 1)

4d2 vol(Bd)

∫
Bd

�
[
(1 − ‖x‖2)f (x)

]
P n

j,�(W0; x) dx

= 2j (j + 1)

d2 vol(Bd)

[∫
Bd

(1 − ‖x‖2)f (x)�P n
j,�(W0; x) dx

− 2
∫

Sd−1
Y

n−2j
� (x′)f (x′) d�

]
, (3.3)

where we have used the fact that P
(0,�)

j (1) = 1. Let �P (0,�) denote the derivative of P (0,�). Using
(2.2) and (2.3), it is easy to see that

�[P n
j,�(W0; x)] = 8

[
2r2�2

P
(0,�j )

j (2r2 − 1)

+ (n − 2j + d/2)�P
(0,�j )

j (2r2 − 1)

]
Y

n−2j
� (x).

Let us denote the expression in the square bracket by Mj . The Jacobi polynomial P (0,�)

j (s) satisfies
the differential equation

(1 − s2)y′′ − (−� + (� + 2)s)y′ + j (j + � + 1)y = 0.

Hence, changing variable 2r2 − 1 �→ s, we conclude that

2(1 − r2)Mj = −j (j + �j + 1)P
(0,�j )

j (s) + 1
2 (j + �j + 1)(1 + s)P

(1,�j +1)

j−1 (s).

On the other hand, using (2.8), (2.7), [6, (4.5.5)], and the fact that [1, p. 782]

(2j + � + 1)(1 + s)P
(1,�+1)

j−1 (s) = 2(j + �)P
(1,�)

j (s) + 2jP
(1,�)

j−1 (s)

we conclude that

2(1 − r2)Mj = (�j + j + 1)(�j + j)

2j + �j + 1

[
−jP

(1,�j )

j−1 (s) + (j + 1)P
(1,�j )

j (s)

]

= 1

2
(�j + j + 1)(�j + j)(1 − s)P

(2,�j )

j−1 (s)

= (�j + j + 1)(�j + j)(1 − r2)P
(2,�j )

j−1 (2r2 − 1).

Consequently, we have proved that

(1 − ‖x‖2)�[P n
j,�(W0; x)] = 4(�j + j + 1)(�j + j)(1 − r2)P

(2,�j )

j−1 (2r2 − 1)Y
n−2j
� (x)

= 4(�j + j + 1)(�j + j)Qn
j,�(x)

which leads to the stated result for j �1 by (3.3). The proof of j = 0 is similar but easier, in
which we need to use (2.13). �



240 Y. Xu / Journal of Approximation Theory 138 (2006) 232–241

Let us denote by Pn(W�; x, y) the reproducing kernel of Vd
n (W�), which can be written as

Pn(W�; x, y) =
∑
|�|=n

A−1
�,�P�(W�; x)P�(W�; y),

where A�,� = c�
∫
Bd [P�(W�; y)]2W�(y) dy in which c� is the normalization of W�. Let us also

denote by C

n(t) the Gegenbauer polynomial of degree n, and by x · y the usual dot product of

x, y ∈ Rd .

Corollary 3.2. For f ∈ H 2(Bd) and x ∈ Bd ,

projn f (x) = Ynf (x) + (1 − ‖x‖2)
4(

d
2

)
vol(Bd)

∫
Bd

f (y)Pn−2(W2; x, y)(1 − ‖y‖2) dy

− (n + d/2)

4
(1 − ‖x‖2)

∑
1� j �n/2

P
(2,n−2j+ d−2

2 )

j−1 (2‖x‖2 − 1)

P
(2,n−2j+ d−2

2 )

j−1 (1)

Yn−2j f (x),

where with x′ = x/‖x‖ ∈ Sd−1,

Ymf (x) = ‖x‖m

∫
Sd−1

f (y′)m + (d − 2)/2

(d − 2)/2
C

d−2
2

m (x · y′) d�(y′).

Proof. The values of Hj = 〈Qn
j,�, Q

n
j,�〉� are given in (2.12). It follows immediately that

�n∑
�=1

H−1
0 f̂ n

0,�Q
n
0,�(x) = 1

�n−1

∫
Sd−1

f (y′)
�n∑
�=1

Yn
� (y′)Y n

� (x) d�(y′) = Ynf (x),

where the last step follows from the summation formula of spherical harmonics,

�n∑
�=1

Yn
� (x)Y n

� (y) = ‖x‖n

�n∑
�=1

Yn
� (x′)Y n

� (y) = ‖x‖n n + (d − 2)/2

(d − 2)/2
C

d−2
2

n (x′ · y)

for x′, y ∈ Sd−1. Furthermore, setting f = Qn
j,� with j �1 in (3.2) also shows

Hj = 8j (j + 1)

d2 vol(Bd)
(�j + j)(�j + j + 1)

∫
Bd

[Qn
j,�(x)]2 dx.

Hence, it follows from (3.2) and (2.12) that

H−1
j f̂ n

j,� =
∫
Bd f (y)Qn

j,�(y) dy∫
Bd [Qn

j,�(y)]2 dy
− n + d/2

2j (j + 1)

1

�d−1

∫
Sd−1

f (y′)Y n−2j
� (y′) d�(y′). (3.4)

The relation (2.14) readily shows that∫
Bd

[Qn
j,�(y)]2 dy = 1

4

(
d

2

)
vol(Bd)c2

∫
Bd

[P n
j,�(W2; y)]2W2(y) dy. (3.5)

We multiply (3.4) byQn
j,�(x) and sum over � and j. Using (3.5) and the fact thatP

(2,n−2j+ d−2
2 )

j−1 (1) =
j (j + 1)/2, the stated result follows from (3.2) and (3.1). �

It follows from this corollary that the orthogonal expansion of f with respect to 〈·, ·〉� coincides
with the spherical harmonic expansion of f when restricted on Sd−1.
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